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Abstract

During evolutionary history, genomes evolve by DNA mutation, genome rearrange-

ment, duplication and gene loss events. There has been endless effort to the phy-

logenetic and ancestral genome inference study. Due to the great development of

various technology, the information about genomes is exponentially increasing, which

make it possible figure the problem out. The problem has been shown so interest-

ing that a great number of algorithms have been developed rigorously over the past

decades in attempts to tackle these problems following different kind of principles.

However, difficulties and limits in performance and capacity, and also low consistency

largely prevent us from confidently statement that the problem is solved. To know

the detailed evolutionary history, we need to infer the phylogeny of the evolution-

ary history (Big Phylogeny Problem) and also infer the internal nodes information

(Small Phylogeny Problem). The work presented in this thesis focuses on assessing

methods designed for attacking Small Phylogeny Problem and algorithms and mod-

els design for genome evolution history inference from FISH data for cancer data.

During the recent decades, a number of evolutionary models and related algorithms

have been designed to infer ancestral genome sequences or gene orders. Due to the

difficulty of knowing the true scenario of the ancestral genomes, there must be some

tools used to test the robustness of the adjacencies found by various methods. When

it comes to methods for Big Phylogeny Problem, to test the confidence rate of the

inferred branches, previous work has tested bootstrapping, jackknifing, and isolat-

ing and found them good resampling tools to corresponding phylogenetic inference

methods. However, till now there is still no system work done to try and tackle this
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problem for small phylogeny. We tested the earlier resampling schemes and a new

method inversion on different ancestral genome reconstruction methods and showed

different resampling methods are appropriate for their corresponding methods.

Cancer is famous for its heterogeneity, which is developed by an evolutionary

process driven by mutations in tumor cells. Rapid, simultaneous linear and branching

evolution has been observed and analyzed by earlier research. Such process can

be modeled by a phylogenetic tree using different methods. Previous phylogenetic

research used various kinds of dataset, such as FISH data, genome sequence, and

gene order. FISH data is quite clean for the reason that it comes form single cells

and shown to be enough to infer evolutionary process for cancer development. RSMT

was shown to be a good model for phylogenetic analysis by using FISH cell count

pattern data, but it need efficient heuristics because it is a NP-hard problem. To

attack this problem, we proposed an iterative approach to approximate solutions

to the steiner tree in the small phylogeny tree. It is shown to give better results

comparing to earlier method on both real and simulation data.

In this thesis, we continued the investigation on designing new method to better

approximate evolutionary process of tumor and applying our method to other kinds

of data such as information using high-throughput technology. Our thesis work can

be divided into two parts. First, we designed new algorithms which can give the same

parsimony tree as exact method in most situation and modified it to be a general

phylogeny building tool. Second, we applied our methods to different kinds data

such as copy number variation information inferred form next generation sequencing

technology and predict key changes during evolution.
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Chapter 1

Introduction

1.1 Ancestral Genome Inference and methods assessment

During evolutionary history, genomes get changed not only by events like DNA mu-

tation, but also by other level of events such as genome rearrangement, duplication

and gene loss. Since rearrangement events are rare and far less common than simple

nucleotide mutations, they can be used to reconstruct evolutionary history extends

far back to the evolutionary history.

The success of phylogenetic reconstruction demonstrates the power of revealing the

evolutionary relation of a group of organisms by computational means. As phylogeny

often takes the form of rooted binary tree, each internal node of the tree can be

naturally regarded as the common ancestor of the living organisms descended from

it. Fig 1.1 shows an simple phylogenetic tree inferred from 19 species of True flies

(Diptera) family [159]. The predication of ancestral orders of these ancestors has

been investigated in-depth and several methods have been developed for the task.

The small phylogeny problem (SPP) defines when the phylogenetic tree is given

and the goal is only to reconstruct the ancestral genomes, while the BPP searches

the most appropriate tree along with a set of ancestral genomes. In my thesis, we are

interested in the small phylogeny problem. Majority of current methods solving SPP

adopt either adjacency-based approach in which rearrangements are only implicitly

considered or rearrangement-based approach that involves computing numerous in-

stances of median problems. In particular, adjacency-based methods mainly focus
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Figure 1.1 Phylogenetic inferred for True Flies

.

on the analysis of independent gene adjacencies extracted from the gene orderings,

trying to calculate or estimate the score for each gene adjacency to present in an

ancestral genome. The final step is to construct a proper gene/edge graph and rejoin

discrete gene adjacencies back into contiguous ancestral regions (CAR) by optimiz-

ing the total score of the path. From another point of view, some methods employ

a non-parametric way (parsimony) and suggest to use least number of changes to

explain observed data; while the rests estimate the parameters in a parametric way

and use posterior probabilities or likelihood to score the gene adjacencies. Table 1.1

generalizes on the difference between a number of methods for solving SPP with gene

order data.

In the context of rearrangement-based parsimonious methods, the median problem

can be formalized as follows: give a set of m genomes with permutations {xi}1≤i≤m and

a distance measurement d, find another permutation xt such that the median score

defined as ∑m
i=1 d(xi, xt) is minimized. GRAPPA andMGR are two similar methods

that implemented a selection of median solvers for phylogeny and ancestral gene-order
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inference. However solving even the simplest case of median problem when m equals

to three is NP-hard for most distance measurements [15, 19, 139]. In detail, given a

tree topology, these methods iteratively assigns median genomes to ancestral nodes

in the tree until convergence. Then the set of gene-order assignments that minimizes

the tree score are reported as the resulting ancestral genomes. Since the scoring

procedure of GRAPPA involves solving numerous instances of median problems, a

fast median solver is crucial. Exact solutions to the problem of finding a median

of three genomes can be obtained for the inversion, breakpoint and DCJ distances

[20, 122, 154]. Among all the median solvers, the best one is the DCJ median solver

proposed by Xu and Sankoff (ASMedian [154]) based on the concept of adequate

subgraph. Adequate subgraphs allow decompositions of a multiple breakpoint graph

into smaller and easier graphs. Though the ASMedian solver could remarkably scale

down the computational expenses of median searching, it yet runs very slow when

the genomes are distant. On the other hand, GASTS and SCJ are two heuristic

methods that scale up their capacities to handle high-resolution vertebrate genomes.

GASTS is based on a fast and accurate heuristic for the inversion median [108] in

which only a few of the simplest decompositions of adequate graphs are be solved; it

provides a fast and robust scoring method for a fixed tree and demonstrated very high

accuracy in the simulation experiments compared to MGR. Single-cut-or-join (SCJ)

defines a breakpoint-like operation proposed under which the median problem and

SPP can be solved in polynomial time. It utilized the Fitch’s algorithm to solve the

SPP in which each adjacency is viewed as a binary character of state either presence

or absence and ultimately all adjacencies are determined in ancestral genomes. This

is the only known evolutionary distance for which the SPP has a polynomial time

solution.

Adjacency-base parsimonious method was formally introduced in InferCARs

by Ma in 2006. It identifies a most-parsimonious scenario for the history of each

3
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individual adjacency, introduces weights to the graph edges to model the reliability

of each adjacency and propose a greedy heuristic approach to look for vertex-disjoint

paths in the graph, which represent the contiguous ancestral regions. Later Ma

introduced an extended work InferCARsPro in the probabilistic framework for

reconstructing ancestral order. The essential part of this method is to predict the

posterior probability of an adjacency occurring in the ancestor based on an extended

Jukes-Cantor model for breakpoints. However, neither of Ma’s methods is able to

hand the scenario where gene contents between input genomes are difference and

Ma’s methods can hardly guarantee complete assembly and hence often return a large

number of CARs. Also Ma’s methods require users to input a tree with branch lengths

attached instead of estimating the branching lengths itself. To alleviate the problems,

GapAdj is proposed to handle unequal gene contents and use TSP solver to replace

the greedy heuristic to assemble gene adjacencies into completely assembled genomes

at the sacrifices of accuracy. The core of GapAdj is the relaxation of direct adjacencies

and allows pair of genes separated by up to a give number of genes. In this way, based

on the assumption that small and local evolutionary events are more frequent than

large and far-reaching operations, GapAdj expects to reconnect CARs by considering

gapped adjacencies and gives good assembly of gene adjacencies. GapAdj can also

treat datasets of unequal gene contents by first inferring the ancestral gene content

through a natural process proposed in [56]. PMAG [69, 70] is an adjacency-based

probabilistic framework of inferring the conditional probability of observing a gene

adjacency in the target genome using the Bayes’ theorem. Moreover they enhanced

the general framework with a transition model and a re-root procedure. PMAG is

shown to be significantly faster in running time and have a lower error rate than

earlier method.

Since it is almost impossible to get the true evolutionary history when it comes

to real data, to test the robustness of existing ancestral reconstruction method by
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Table 1.1 Classification of current methods for solving gene order small phylogeny
problem (SPP)

Parsimonious Probabilistic
Adjacency-based InferCARs [83], GapAdj

[47]
InferCarsPro [82], PMAG+
[70]

Rearrangement-based GRAPPA [91], MGR [1,
14], GASTS [153], SCJ [9]

N/A

comparing to true situation is almost impossible. Methods must be developed to

assess the quality of inferred ancestral genomes through resampling strategies. For

phylogeny reconstruction, it is now a common practice to provide robustness evalua-

tion of constructed tree edges. If the dataset contains DNA (or protein) sequences,

the standard method is bootstrapping [39] which relies on resampling of the input

columns. For gene order data, as the genome is viewed as one character, such ap-

proach cannot be readily applied and jackknifing was the first approach used to assess

gene order phylogeny, which resamples the genomes by removing 40% of the genes

from the dataset [120]. As some rearrangement methods use gene adjacencies as char-

acters, Lin et al. [80] showed that bootstrapping on adjacencies can also be applied

to rearrangement data. Shi et al. [119] tried another resampling strategy (called iso-

lating), which randomly picks some genes and places them into new chromosomes.

This approach simulates a major data error in genome assembly where some genes

are misplaced. As no gene is excluded from the computation, using isolating achieves

better performance than using jackknifing.

However, to our knowledge, there is no method to evaluate the quality of in-

ferred ancestral genomes, although many tools are capable now to handle real world

genomes.
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1.2 Cancer and cancer phylogeny analysis

Cancer is recognized to be an evolutionary process driven by mutations in tumor

cells [149]. These evolutionary processes include single-nucleotide variations, in-

sertions and deletions, copy-number aberrations, structural variations and gene fu-

sions [46]. Many experiments reveal considerable intra–tumor and inter–tumor het-

erogeneity [132], attributed to these evolutionary processes. Clinical implications of

this heterogeneity, for example in drug resistance and disease diagnosis, has been well

studied [132, 57].

Rapid, simultaneous linear and branching evolution in multiple sub-clones of can-

cer cells can be modeled by a phylogenetic tree [158]. Inferring such phylogenies

facilitates the study of cancer initiation, progression, treatment, and resistance [3].

They can help pinpoint important changes that lead to the recurrence of some genome

aberrations [6]. Phylogenies also aid in identifying genes crucial for the evolution and

hence may contribute to developing better cancer treatment [104, 86, 94, 25].

Mutation patterns in cancer are characterized by frequent and widespread gains

and losses of genomic material which is markedly different from what is observed in

species or population level evolution [3]. In particular, gene copy number changes

affect a larger fraction of the genome in cancers than do any other type of somatic

genetic alteration [121, 160]. During tumor development, the gene copy number can

increase or decrease, due to failures in DNA repair mechanisms (e.g., translesion syn-

thesis and non-homologous end joining) [34, 115, 131, 17, 29, 113, 23, 152]. Another

characteristic feature of tumor evolution is the high genetic heterogeneity found. Pre-

vious phylogenetic models for cancer, such as [86, 102, 156, 144, 59, 50], either do not

account for these unique characteristics of cancer evolution or are not scalable and

hence not of practical use. Thus there is need for development of new phylogenetic

models with scalable algorithms that can adequately model cancer evolution. A step

towards a scalable model for inferring tumor phylogeny by copy number variation

6



www.manaraa.com

was taken by Chowdhury et al. [27, 26] using FISH data.

Cancer is recognized to be an evolutionary process driven by mutations in tu-

mor cells [149]. These evolutionary processes include single-nucleotide variations,

insertions and deletions, copy-number aberrations, structural variations and gene fu-

sions [46]. Many experiments reveal considerable intra–tumor and inter–tumor het-

erogeneity [132], attributed to these evolutionary processes. Clinical implications of

this heterogeneity, for example in drug resistance and disease diagnosis, has been

well studied [132, 57]. FISH data can be got from FISH technology. Each cell has

a non-negative integer for each gene probe, the number of digits is the gene probes

detected. For a general sample, FISH data of a system is a 2D-array, row number

means how many patterns are found in it while column number is how many features

are used.

Rapid, simultaneous linear and branching evolution in multiple sub-clones of can-

cer cells can be modeled by a phylogenetic tree [158]. Inferring such phylogenies

facilitates the study of cancer initiation, progression, treatment, and resistance [3].

They can help pinpoint important changes that lead to the recurrence of some genome

aberrations [6]. Phylogenies also aid in identifying genes crucial for the evolution and

hence may contribute to developing better cancer treatment [104, 86, 94, 25]. Muta-

tion patterns in cancer are characterized by frequent and widespread gains and losses

of genomic material which is markedly different from what is observed in species or

population level evolution [3].

In particular, gene copy number changes affect a larger fraction of the genome in

cancers than do any other type of somatic genetic alteration [121, 160]. During tumor

development, the gene copy number can increase or decrease, due to failures in DNA

repair mechanisms (e.g., translesion synthesis and non-homologous end joining) [34,

115, 131, 17, 29, 113, 23, 152]. Another characteristic feature of tumor evolution is

the high genetic heterogeneity found, the evolutionary process of current situation
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can be explained by phylogenetic analysis. A phylogeny is a term that represents the

reconstructed evolutionary relationship of a set of organisms or cells in the form of a

binary tree in which the given set of organisms are descendants placed at the leaves

and internal nodes stand for extinct ancestors connected by the edges. Previous

phylogenetic models for cancer, such as [86, 102, 156, 144, 59, 50], either do not

account for these unique characteristics of cancer evolution or are not scalable and

hence not of practical use. Thus there is need for development of new phylogenetic

models with scalable algorithms that can adequately model cancer evolution.

Rectilinear steiner minimum tree

Given a weighted connected or undirected graph, a spanning tree of it is a subgraph

that connects all the vertices together. A single graph can have many different span-

ning trees. The tree weight is the sum of the weights of the edges in that spanning

tree. A minimum spanning tree (MST) or minimum weight spanning tree is then a

spanning tree with weight less than or equal to the weight of every other spanning

tree. There can be multiple minimum spanning trees in a graph. Fig.1.2 gave a

good example of minimum spanning tree. The RSMT problem is a graph similar

to minimum spanning tree and can be defined as follows. The RSMT problem is

NP-complete [48] and is defined as follows.

Definition: RSMT(n, d)

Input: a weighted connected or undirected graph, nodes are values of different fea-

tures.

Output: A minimum weight tree (or L1 distance) including all the observed n nodes

and, as needed, unobserved steiner nodes along with new values for each feature.
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Figure 1.2 A simple example of minimum spanning tree for weighted graph(green
color).
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Chapter 2

Assessing Ancestral Genome Reconstruction

Methods by Resampling

2.1 Background

During evolutionary history, genomes get changed not only by events like DNA mu-

tation, but also by other level of events such as genome rearrangement, duplication

and gene loss. Since rearrangement events are rare and far less common than simple

nucleotide mutations, they can be used to reconstruct evolutionary history extends

far back to the evolutionary history.

Handling rearrangement events is algorithmically very difficult: it took almost a

decade to find the first polynomial algorithm to compute the inversion distance [63],

while distances for sequence data are simple to define and have been thoroughly

studied. Current algorithm development is focused on biological events with better

methods for distance and median computations, using a unifying framework of double-

cut-and-join (DCJ) [157]. On the other hand, several method using the idea of

encoding the genome structure into binary sequences [81] and maximum-likelihood

approaches have been developed and shown that they have reached performance that

is comparable to the best sequence-based methods.

Most of existing genome analysis methods can not only be used to reconstruct

phylogenies, but also be used to obtain an inference of ancestral genomes, which has

a wide range of applications, such as to decide the evolution of genome structures [31],

to infer the genome rearrangement rate and mechanism [143], to infer the orthology
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assignment [133], and to estimate gene orders of incompletely sampled genomes [71].

Since it is almost impossible to get the true evolutionary history, we must develop

methods to assess the quality of inferred phylogenies and ancestral genomes, through

resampling strategies. For phylogeny reconstruction, it is now a common practice to

provide robustness evaluation of constructed tree edges. If the dataset contains DNA

(or protein) sequences, the standard method is bootstrapping [39] which relies on

resampling of the input columns. For gene order data, as the genome is viewed as one

character, such approach cannot be readily applied and jackknifing was the first ap-

proach used to assess gene order phylogeny, which resamples the genomes by removing

40% of the genes from the dataset [120]. As some rearrangement methods use gene

adjacencies as characters, Lin et al. [80] showed that bootstrapping on adjacencies

can also be applied to rearrangement data. Shi et al.[119] tried another resampling

strategy (called isolating), which randomly picks some genes and places them into

new chromosomes. This approach simulates a major data error in genome assembly

where some genes are misplaced. As no gene is excluded from the computation, using

isolating achieves better performance than using jackknifing.

However, to our knowledge, there is no method to evaluate the quality of inferred

ancestral genomes, although many tools are capable now to handle real genomes.

In our work, we use simulations to test the performance of existing methods under

various resampling strategies. From our experiments, we find that resampling is a

valid strategy to assess the quality of ancestral genomes and worst adjacencies can

be removed.

Genome Rearrangements

Given a set of n genes {1, 2, · · · , n}, a genome can be represented by an ordering

of these genes. To indicate the strandedness of genes, each gene is assigned with

an orientation that is either positive, written i, or negative, written −i. Two genes
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i and j are said to be adjacent in genome G if i is immediately followed by j, or,

equivalently, −j is immediately followed by −i.

Denote the head of a gene i by ih and its tail by it. We refer +i as an indication

of direction from head to tail (ih → it) and otherwise −i as (it → ih). There are

a total of four scenarios for two consecutive genes a and b in forming an adjacency:

{at, bt}, {ah, bt}, {at, bh}, and {ah, bh}. If gene c is at the first or last place of a

linear chromosome, then we have a corresponding singleton set, {ct} or {ch}, called

a telomere.

Let G be a genome with signed ordering {g1, g2, · · · , gn}, an inversion (also called

reversal) between indexes i and j (i ≤ j) of produces a new genome with linear

ordering

g1, g2, · · · , gi−1,−gj,−gj−1, · · · ,−gi, gj+1, · · · , gn

. There are additional operations for multi-chromosomal genomes, such as translo-

cation (one end segment in one chromosome is exchanged with one end segment in

the other chromosome), fission (one chromosome splits and becomes two), and fusion

(two chromosomes combine to become one).

Yancopoulos et al. [157] proposed a universal double-cut-and-join (DCJ) opera-

tion that can be used to represent inversions, translocations, fissions, and fusions.

Researchers everywhere have adopted the DCJ model in their work because of its

mathematical simplicity and because of its observed robustness in practice.

A genome can also be expressed as a multiset of adjacencies and telomeres. By

using 1 (0) to indicate presence (absence) of an adjacency, we can encode and transfer

genomes into binary sequences (Table 2.1 shows an example)

Table 2.1 Example of encoding two genomes G1 : (1, 2,−3) and G2 : (3,−2, 1) into
binary sequences.

{1h} {1t, 2h} {2t, 3t} {3h} {2h, 1h} {1t}
G1 1 1 1 1 0 0
G2 0 0 1 1 1 1
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Ancestral genome reconstruction

Scientists have been working on reconstructing extinct ancestral genomes for quite a

long time. For example, some such work has been used to predict protein functional

shift and positive selections[92]. Ancestral genome reconstruction normally assumes

a given phylogeny tree and detailed information for leaf genomes, with the quest to

infer genomes on the internal nodes (ancestors). There are now two different groups

of methods: event-based and adjacency-based methods.

Event-based methods

Event-based methods are based on maximum parsimony and find the best tree (and

its associated ancestral genomes) that minimizes the total number of events. The

simplest tree has only three leaves and one internal node, thus form the median

problem which is defined as follows: given three genomes, find a single genome that

minimizes the sum of the pairwise distances between itself and each of the three given

genomes. However solving even this simplest case is NP-hard for most distance mea-

surements [42], thus many current event-based methods use an iterative improvement

approach, based on the computation of medians defined on internal nodes.

Exact solutions to the median problem are available for inversion, breakpoint and

DCJ distances [109, 155]. Among all existing median solvers, the best is the DCJ

median solver proposed by Xu and Sankoff (ASMedian [155]) based on the concept

of adequate subgraph. The best method for hanlding more than three genomes is

GASTS [153], which is a heuristic based on ASMedian and can quickly score a fixed

phylogenetic tree, as demonstrated on a set of vertebrate genome with over 2,000

genes.
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Adjacency-based methods

The other type of model that handles gene adjacencies relies (Table 2.1) on two

separate steps. First, the weight or probability that a gene adjacency is present in a

genome is computed independently. Then those gene adjacencies are assembled into

a valid ancestral genome. InferCAR [83] and its probabilistic version InferCARsPro

are the pioneering methods based on this model. In this model, all combinations of

gene adjacencies are considered, and their probabilities are computed by a variant of

the Fitch parsimony algorithm. Finally a greedy heuristic is used for to assemble the

genes into a valid genome.

Later by relaxing the constraint of gene adjacency to gapped adjacency, GapAdj is

proposed using a rigorous score for each potential ancestral adjacency (a, b), reflecting

the maximum number of times a and b can be adjacent for any setting of ancestral

genomes, as well as an algorithm to generate more reliable amount of chromosomes.

PMAG is till now the best probabilistic method introduced by Hu et al. [68, 70]

which has no need of branching length input and is parameter free. It first trans-

fers rearrangement data into adjacency data as leaf genome adjacencies; then these

leaf adjacencies are used to infer the probability of each adjacency in the ancestral

genomes. Based on the probabilities of adjacencies, we can construct a Traveling

Salesperson Problem to find a path with the minimum TSP score, which can then be

transferred back into the ancestral gene order.

Simulation is widely used to assess the quality of various ancestral genome re-

construction methods, since in simulations true ancestral gene orders are known.

However, when it comes to real biological data, the situation would be quite different

due to the difficulty of knowing the true ancestors. Until now, only Ma et al.[83]

has tried to measure the percentage of true adjacencies out of all the adjacencies in

the constructed genomes produced by his own method. The question whether there

is a universal resampling scheme good for all ancestral genome reconstruction meth-
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ods, or different resampling schemes should be used for different methods is still not

answered.

Several resampling approaches have been proposed to assess the tree edges gen-

erated by phylogenetic inference methods. If the method is sequence based, then

classical bootstrapping is suggested. A new resampling scheme which combines jack-

knifing and bootstrapping is used by Lin[80] and it has a similar support value to

classical bootstrapping on sequence data based methods, but can also be applied for

rearrangement data based phylogeny inference methods. Shi et al. also tried isolating

[119] and jackknifing[120] on rearrangement data and both are shown to work well

on gene order based methods.

2.2 Methods and result

We borrow similar approaches to assess the quality of inferred ancestral gene orders.

The following four resampling strategies are tried in our experiments:

Jackknifing is introduced by Quenouille et al.[107] and further improved by Tukey

et al.[142]. For rearrangement data, a jackknifing event takes one gene out of the

original gene order without putting it back. For this approach, a resampling rate of

k% means that r% genes will be removed and thus only (100 − r)% of the original

genes will participate in the computation. For example, for resampling rate of 40%,

{1,2,3,4,5} might become {1,3,4} after jackknifing.

We can also try jackknifing on adjacency data, which means that only a portion

of existing adjacencies will be left after jackknifing. For example, when r = 33.3

r = 33.3 jackknifing is applied on the adjacencies shown in Table 2.1 (i.e. 1/3

adjacencies will be removed), the new adjacency list may become the one shown in

Table 2.2. Compared to Table reft1, the second and fifth columns are removed.

The bootstrapping operation was first tried by Soltis et al.[125], and later Holmes

et al.[65] introduced the concept of bootstrapping. Given a genome with n genes,
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Table 2.2 Example of jackknifing on adjacencies on Table 2.1, where the second
and the fifth columns are removed.

{1h} {2t, 3t} {3h} {1t}
G1 1 1 1 0
G2 0 1 1 1

X = {x1, x2, ..., xn}, the data input after bootstrapping would become a fictional

data set Y = {y1, y2, ..., yn} constructed by sampling with replacement from X, so

each item in Y can be any item in X. It is possible for one gene in X to show up several

times or not at all in Y. Bootstrapping can be applied to both rearrangement and

adjacency data. However, only bootstrapping on the adjacency data is meaningful

because bootstrapping on gene order will treat genes as isolated letters with no order

information while the order, or adjacency information, should be kept. Using Table

2.1 as an example again, after bootstrapping, the table may become that shown in

Table 2.3. In this example, the first column is duplicated, while the fifth column is

removed, but the total number of column remains 6.

Isolating [119] was first used by Shi et al. for robustness testing on phylogeny

inferring methods from gene order data. A gene is isolated by applying a double-cut

event to the original genome which removes one gene, and make it a new chromosome.

Compared to jackknifing, isolating retains the chosen genes thus introduces smaller

disturbance. For this method, we define the resampling rate r as the percentage of

genes being isolated.

We can also apply random evolutionary events on the input genomes to introduce

disturbance of data, thus providing another resampling technique. As inversion is

viewed as the dominant event, we can randomly choose a part of the genome of any

possible length within a maximum length limit and reverses it. This approach keeps

all of the gene information, so it will still have the same gene order content after

resampling. However, there are some decisions to make: should we apply the same

amount of events on every input genome? should we limit the length of an inversion?
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To simplify the procedure, in our work, we use only one parameter, which is the

resampling rate r defined as the number of inversion events applied divide by the

number of genes. For every genome, we will apply the same amount of events, and

each of these events can start and end at any genes. We call this method Inversion

in later sections.

Experimental design

Our model tree simulation follows Lin’s[79] birth-death model. The model trees are

generated with the following parameters: the number of genomes (m) is 100, the

number of genes (n) is 1000. We use two different tree diameters (d) of 500 and

2000. For each combination of parameters, 10 phylogenies are generated and for

each phylogeny, the same root node is evolved by random double-cut-and-join (DCJ)

events with respect to the tree diameter d.

Given a reconstruction method, if the true ancestors are known, to assess its

quality, we can compare those adjacencies correctly recovered (true positive) from

those missed (negative) and wrongly inferred (false positive). However, since we do

not have any ancestor information in real data analysis, we have to utilize the above

resampling methods using the following procedures:

1. For each dataset, we will generate new datasets by applying one of the above

resampling methods;

2. We will then apply the same reconstruction method to obtain ancestors on the

disturbed input;

3. The above two steps will be repeated k times and for a given ancestor.

After k results are obtained, we will examine each ancestor (i.e. each internal

node of a given tree) in turn, and assess the quality of an adjacency by computing
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the times f that this adjacency appears in the k inferred gene orders; if f
k
is larger

than a cut-off threshold, this adjacency is viewed as potentially good.

In the experiments, for each resampling method, we apply corresponding resam-

pling events to each data set and produce k replicas where k = 100, from these replicas

we use three different ancestral sequence reconstruction methods, PMAG, GapAdj

and GASTS to get the gene orders of the ancestral genomes.

We use Receiver-Operator-Characteristic(ROC) curves to assess the quality of

each resampling approaches. The frequency f of a gene adjacency in an ancestral

genome G is regarded as its confidence value. For each confidence threshold t, if f
k

is greater than t, we retain the gene adjacency in G; otherwise, we discard that gene

adjacency. The value of t ranges from 0.10 to 1.00 with an interval of 0.02.

Suppose the set of adjacencies left after checking with the threshold is At and the

set of adjacencies in the true ancestral nodes is AT . Then specificity is treated as the

proportion of the adjacencies in AT and also in At ,as the expression is |AT
⋂

At|/|At|,

while sensitivity is the proportion of adjacencies in At and also in AT , expression

as |AT
⋂

At|/|T |. The ROC map is drawn as the relationship of 1− specificity and

sensitivity.

We apply bootstrapping the same way as classical bootstrapping, which is only

valid for the adjacency-based methods, such as PMAG and GapAdj. Jackknifing is

also applied on the input data for PMAG both on rearrangement and adjacency data

level and only on rearrangement data level for GASTS and GapAdj. Isolating and

inversion are used on all the input data for the three methods. For the resampling

rates, given n genes, the rates of jackknifing vary from 0.05n to 0.40n with an interval

of 0.05n, the rates of isolating and inversion are both within the range 0.01n to 0.13n

with an interval of 0.01n. Bootstrapping has only one requirement that the number

of columns should be kept the same (Table 2.3).
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Table 2.3 Example of bootstrapping on adjacencies on Table 2.1, where the first
column is duplicated and the fifth columns is removed. The total number of
columns remains to be 6.

{1h} {1h} {1t, 2h} {2t, 3t} {3h} {1t}
G1 1 1 1 1 1 0
G2 0 0 0 1 1 1

Experimental Results

Figures 2.1 and 2.3 to 2.6 and ?? show the ROC curves for each reconstruction

method, using various resampling methods. We first compare the performance of

different resampling rates under the same resampling method, we then choose the rate

with the largest area under its corresponding ROC curve, and summarize them to

determine whether a resampling approach is valid for a given reconstruction method.

Figures 2.1 and 2.2 show the ROC curves for PMAG, with tree diameters (d) equal

to 2000 and 500 events respectively. These two figures have quite similar results thus

we only analyze the results for d = 2000 (Figure 2.1).

Fig.2.1(a) and 2.1(b) show the ROC curves of resampling using isolating and

applying random inversion events. In these figures, with increasing resampling rates,

the area under ROC curves increase first and then decrease; with resampling rates of

0.03, both methods have the largest areas under the ROC curves.

Fig.2.1(c) shows the ROC curves of jackknifing methods on gene orders. The result

shows the ROC areas have no big difference when the jackknifing rates are between

0.02 0.30. Fig.2.1(d) shows the ROC curves of using jackknifing on adjacencies, where

the ROC areas decreases with increasing jackknifing rates. These two figures suggest

that both jackknifing methods have poor performance for PMAG.

We summarize the ROC curve results for PMAG in Fig.2.1(e), using the best

rate for each resampling method. As shown in the figure, for PMAG, the resampling

techniques of isolating and inversion are nearly the same and dominate the other two

resampling schemes.
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Figure 2.1 Result for PMAG (Diameter=2000). This figure shows the ROC curves
using various resampling techniques for PMAG. (a) Isolating, (b) Applying random
inversion events, (d) Jackknifing on gene orders, (d) Jackknifing on adjacencies. (e)
Summary, the resampling rates with the largest ROC area for each resampling
method are shown here. From the results, isolating and inversion is better than
other resampling methods for PMAG.

Results for GapAdj

As the results for both tree diameters are similar, we only show those from d = 2000

in Figure 2.3. Compared to those shown in Fig.1, the performance of isolating and

inversion approaches are quite similar, with the best resampling rates to be 0.03

again. However, jackknifing on input gene orders seems to have better performance
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Figure 2.2 Result for PMAG (Diameter=500). This figure shows the ROC curves
using various resampling techniques for PMAG. (a) Isolating, (b) Applying random
inversion events, (d) Jackknifing on gene orders, (d) Jackknifing on adjacencies. (e)
Summary, the resampling rates with the largest ROC area for each resampling
method are shown here. From the results, isolating and inversion is better than
other resampling methods for PMAG.

for GapAdj, and the best resampling rate is around 0.03, i.e. 3% genes can be removed

with reasonable quality retained.

Fig. Figure 2.3(d) shows all the result of all resampling methods for GapAdj. The

detailed index are: 3% isolating rate, 3% inversion rate, 10% jackknifing rate on gene

order, The other two methods are not shown here because they are not applicable to
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GapAdj. As shown in the figure, isolating and inversion are again nearly the same

and obviously dominate jackknifing.

Figure 2.3 Result for GapAdj (Diameter=2000). This figure shows the ROC
curves using various resampling techniques for GapAdj. (a) Isolating, (b) Applying
random inversion events, (d) Jackknifing on gene orders. (d) The sum of the results,
the resampling rates with largest ROC area for each resampling method are shown
here. From the result, isolating and inversion is better than jackknifing for GapAdj
ancestral genome reconstruction method.

Results for GASTS

As the results for both tree diameters are similar, we only show those from d = 2000 in

Fig. Figure 2.5. Compared to those shown in Figure 2.5, the performance of isolating

and inversion is again quite similar, with the best resampling rates to be 0.03 for both

methods. The performance of jackknifing on gene orders is greatly improved and as

shown in figure Figure 2.5(d), isolating, inversion and jackknifing have very similar

quality.
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Figure 2.4 Result for GapAdj (Diameter=500). This figure shows the ROC curves
of various resampling techniques for GapAdj. (a) Isolating, (b) Applying random
inversion events, (c) Jackknifing on gene orders, (d) Summary, the resampling rates
with the largest ROC area for each resampling method are shown here. From the
results, isolating and inversion is better than other resampling methods for PMAG.

FP and FN results

The ROC figures do not specify which cut-off threshold should be used, i.e. above

which threshold an adjacency can be determined to be “true”. We pick the best

resampling rates for different reconstruction and resampling methods from Figures 2.1

to 2.3 and 2.5, and show the FP and FN rates in Table 2.4. Suppose D is a set of gene

adjacencies encoded from an ancestral genome and D’ represents the corresponding

genome inferred from the leaf data. A gene adjacency in D is missing in D’ if D’ does

not contain such an adjacency defining the same connection; such a gene adjacency is

called a false negative (FN). The false negative rate (FNR) measures the proportion

of false negative gene adjacencies with respect to the total number of gene adjacencies
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Figure 2.5 Results for GASTS (Diameter=2000). This figure shows the ROC
curves using various resampling techniques for GapAdj. (a) Isolating, (b) Applying
random inversion events, (c) Jackknifing on gene orders. (d) The sum of the results,
the resampling rates with largest ROC area for each resampling method are shown
here. From the result, isolating, inversion and Jackknifing have similar effect on
GASTS ancestral genome reconstruction method.

in D. The false positive (FP) and false positive rate (FPR) are defined similarly, by

swapping D and D’. The FP and FN values are used to identify the best threshold

for different methods. In the table, the original FP and FN without resampling; the

FP and FN value under different threshold of 70, 75, 80, 85 are shown.

In phylogenetic reconstructing from DNA or protein sequence data, the threshold

value of 80% is widely used. From Table 2.4, the threshold value of 75% has the best

balance of FP and FN, thus can be used to filter bad adjacencies.
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Figure 2.6 Result for GASTS (Diameter=500). This figure shows the ROC curves
of various resampling techniques for GASTS. (a) Isolating, (b) Applying random
inversion events, (d) Jackknifing on gene orders, (e) Summary, the resampling rates
with the largest ROC area for each resampling method are shown here. From the
result, isolating, inversion and Jackknifing have similar effect on GASTS ancestral
genome reconstruction method.

2.3 Conclusions

In our work, we conduct extensive experiments to evaluate various resampling tech-

niques in assessing the quality of inferred ancestral genomes. From the experimental

results, isolating and applying random inversions are shown to produce a better ROC

curve for PMAG and GapAdj compared to other resampling schemes. Thus both

isolating and inversion are suggested for adjacency-based ancestral reconstruction

method. For event-based parsimony methods (GASTS), we find that jackknifing,

isolating, and inversion produce similar ROC curve if they have similar resampling

rates. The reason for such results is because both PMAG and GapAdj only keep part

of leaf adjacency information after resampling to construct the ancestral genome.
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Table 2.4 FP/FN rates of PMAG, GASTS and GapAdj, under various threshold
values and resampling methods.

Thresholds 0% 70% 75% 80% 85%
Diameter-2000 FP FN FP FN FP FN FP FN FP FN
PMAG-Inversion 1.0 1.2 1.0 2.1 1.0 2.1 0.9 2.2 0.9 2.2
PMAG-Isolating 1.0 1.2 1.0 2.1 1.0 2.1 1.0 2.2 0.9 2.2
GapAdj-Inversion 10.7 10.7 0.6 14.2 0.5 17.9 0.5 23.4 0.2 31.2
GapAdj-Isolating 10.7 10.7 0.8 12.4 0.7 15.3 0.7 19.4 0.4 25.2
GASTS-Inversion 0.19 0.19 0.06 0.22 0.05 0.24 0.05 0.26 0.05 0.28
GASTS-Isolating 0.19 0.19 0.05 0.24 0.05 0.27 0.04 0.31 0.03 0.36
GASTS-Jackknifing 0.19 0.19 0.03 0.33 0.02 0.39 0.01 0.53 0.01 3.78

Both jackknifing and bootstrapping will remove all the information about certain

adjacencies, while isolating and inversion still keep part of the adjacency information

of the leaf genomes, which is the reason isolating and inversion can outperform other

strategies for PMAG and GapAdj. Jackknifing on gene orders, compared to jackknif-

ing on adjacencies, has more effect on adjacencies because it not only removes part

of original adjacencies, but also generates a lot of incorrect adjacencies, thus it has

the worst performance and should not be used. For GapAdj, it can recover some of

this impact by allowing certain distance for adjacencies which could be the reason

that the difference is smaller compared to PMAG. The FP and FN data show that

the best threshold for different resampling schemes is around 75%.
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Chapter 3

An iterative approach for phylogenetic

analysis of tumor progression using cancer data

3.1 Introduction

Traditionally, cancer research focused mainly on the identification of oncogenes and

tumor suppressor genes. However, in the last decades it become more and more

well-known that disruption of normal differentiation is an essential contributor of

tumorigenesis. Not total cellular maturation is now treated as a symbol of human

cancers [62], and the level of differentiation of a tumor plays a key role for diagnosis,

prognosis, and treatment. The identification of phenotypic markers and gene ex-

pression profiles, for instances, correlated with maturation has enabled researchers to

link the expansion of malignant cells to certain stages of hematopoietic differentiation

[bennett1976thesiss].

Nevertheless, success to define cancer stages have proven difficult due to an incom-

plete understanding of differentiation pathways from normal cells into mesenchymal

and epithelial tissues. Another difficulty to solve this problem is to collect the data

for different tumor stages to identify the maturation stages they correspond [87]. In

a true tumor development, only a part of cells undergoes differentiation and current

methods do not allow isolation of those cells during the differentiation process from

the bulk of unchanged cells.

Fluorescence in situ hybridization (FISH) give us a chance to probe copy numbers

of small numbers of gene markers in a group of single cells per study. Previous
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studies have shown that a single tumor can have hundreds of genetically distinct cell

types [124, 137, 64]. Development in single-cell sequencing research which offers a

more complete picture of the genome than FISH but for fewer cells supported this

conclusion of great inter-cellular heterogeneity [147]. The extensive heterogeneity

of tumor suggests that tumor phylogeny approaches and models need to scale to

hundreds or thousands of taxa per tumor to produce reliable tools for evolutionary

analysis of single tumors. Before Chowdhury et al.’s studies, phylogenetic model

inference on single cell data has been achieved only for specialized datasets involving

just limited probes per cell. [102, 86]

Recently, Chowdhury et al. successfully modeled the progression of tumor pro-

gression using FISH copy number to the Rectilinear Steiner Minimum Tree (RSMT)

problem, and proposed both exact and heuristic algorithms to reconstruct phyloge-

netic trees modeling the development of cancer cell patterns [27, 26]. The RSMT

problem for phylogenetic analysis is explained more in the following definition.

Problem 3.1.1. The RSMT problem for gene copy number:

Definition: RSMT(n, d)

Input: FISH data of n cell count patterns on d gene probes for a given patient

Output: A minimum weight tree with the rectilinear metric (or L1 distance) including

all the observed n cell count patterns and, as needed, unobserved Steiner nodes along

with their cell count patterns for d probes, Steiner nodes here is used to represent

missing node during gene copy number change process.

The single ancestor could be, for example, cell count pattern with a copy number

count of 2 for each gene probe (a healthy diploid cell) [27, 26]. The RSMT problem

is NP-complete [48]. Note that if all possible cell count patterns in cancer cells are

present as the input, then the RSMT is simply the minimum spanning tree, since

no additional Steiner nodes are needed. Since both the minimum spanning tree and
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the minimum spanning network (as the union of all minimum spanning trees) can

be constructed efficiently, previous heuristics have approximated RSMT by adding

additional Steiner nodes to the minimum spanning network [27, 26]. For example,

Fig.3.1 shows an instance of 4 cell count patterns on 3 genes, and the RSMT can be

obtained by adding a Steiner node to the minimum spanning tree. However, both al-

Figure 3.1 (Top) The input data of 4 cell count patterns on 3 genes. (Bottom left)
The minimum spanning tree has weight 5. (Bottom right) the RSMT has weight 4.
The Steiner node in RSMT is colored in red.

gorithms do not scale well with the number of gene probes, making them impractical

to handle dozens of gene probes — a typical number of genes in one complicated sig-

nal pathway. their above heuristic is likely to be trapped in a local optimum if there

are multiple possible Steiner nodes that can be introduced, since the order in which

the Steiner nodes are added may affect the resulting tree weight. A similar model

based on the Steiner Minimum Tree has also been introduced to study the “small

phylogeny" problem at both the sequence level [114] and the gene order level [11].

A special case of the “small phylogeny" problem is called the median problem —

given three sequences (or permutations), find the configuration of a median genome
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to minimize the sum of the pairwise distances between the median and three input

ones [41]. Sankoff et al. proposed iterative approaches to approximate solutions to

the Steiner tree, which iteratively solve the median problem for one internal vertex

at a time, and to make improvement until a local optimum is found [114, 11]. We

propose similar heuristics to approximate solutions to the RSMT problem through

iteratively optimizing the median version of RSMT problem. Moreover, the new iter-

ative approach incorporates two key observations, the generation of median instances

and the order of iterative optimizations of median instances, which generalizes the

previous approaches of using median solvers to approximate solutions to the Steiner

tree [114, 11] and takes into consideration specific characterization and challenging

in the RSMT problem.

We make some contribution to address the need for algorithms for evolutionary

model inference for tumor phylogenetics capable of handling large single-cell datasets,

with specific application to FISH copy number data. We show here a new heuristic to

attack the RSMT problem, which is inspired by iterative approaches to approximate

solutions to the Steiner tree in the “small phylogeny" problem [114, 11]. Experimental

results from both simulated and real tumor data show that our approach outperforms

the previous heuristic algorithm in approximating better solutions for the RSMT

problem.

In Chapter 2, 3, 4 and 5, we used the datasets for testing. We used both the

real cervical cancer[148] and breast cancer[64] data samples and simulation samples

generated through the same process described in the the supplemental material of

the previous study by Chowdhury et al. [27]. The cervical cancer data contain four

gene probes LAMP3[75], PROX1[150], PRKAA1[72] and CCND1[45], and the breast

cancer data contain eight gene probes COX-2[67], MYC[151], CCND1[45], HER-

2[138], ZNF217[98] ,DBC2[60], CDH1[10] and p53[145]. All those genes are chosen

because they are considered as important factors for cancer growth inhibition or
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promotion. The cervical cancer data is from 16 lymph positive patients (both primary

and metastasis tumors) and 15 lymph negative patients, making 47 samples in total.

The breast cancer data is from 12 patients with both IDC and DCIS and 1 patient

with only DCIS, making 25 samples in total. More details of this FISH data set can

be found in Chowdhury et al. [27].

Chowdhury et al. proposed an inefficient exact algorithm and a efficient heuristic

algorithm to reconstruct phylogenetic trees modeling the development of cancer cell

patterns [27]. Since the inefficient exact algorithm can not finish most of the test

samples with a reasonable amount of time, we compare our iterative approach to

the efficient heuristic algorithm [27]. In the following text, we refer to the efficient

heuristic algorithm as FISHtrees, and refer to our iterative approach as iFISHtrees.

3.2 Methods and result

Iterative approach to attack the RSMT problem

Below we described our approach for building a phylogenetic tree by using copy

number change information from FISH data. As input data, each cell or data input

has some non-negative integer count of each gene probe. Given two cell count patterns

(x1, x2, . . . , xd) and (y1, y2, . . . , yd), the pairwise distance under the rectilinear metric

(or L1 distance) is defined as |x1 − y1|+ |x2 − y2|+ . . . + |xd − yd|, where xi, yi ∈ N.

The weight of a tree with nodes labeled by cell count patterns is defined as the sum

of all branch lengths under the rectilinear metric. Since the distance between two

cell count patterns under the rectilinear metric represents the number of single gene

duplication and loss events between them, a minimum weight tree, including Steiner

nodes if needed, explains the n observed cell count patterns of d probes with minimum

total number of single gene duplication and loss events, from a single ancestor.

Two instances of RSMT(3,d) are shown in Fig.3.2. Given three count patterns
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Figure 3.2 Instances of RSMT(3,d) and the introduction of the steiner node as the
median.

in Fig.3.2(a), a Steiner node is introduced in Fig.3.2(b) with reduced the weight of

the tree (i.e., the number of single gene duplication and loss events) from 7 to 5.

Fig.3.2(c) shows an instance that no Steiner node is introduced. The median version

of RSMT problem can be solved in linear time.

Theorem 3.1. RSMT(3,d) can be solved in time O(d).

Proof. Given three cell patterns (x1
1, x2

2, . . . , x3
d), (x2

1, x2
2, . . . , x2

d) and (x3
1, x3

2, . . . , x3
d),

RSMT(3, d) returns a cell count pattern (m1, m2, . . . , md) such that
3∑

i=1

d∑
j=1
|xi

j −mj|

is minimized, where xi
j, mj ∈ N. Two instances of RSMT(3,d) are shown in Fig.3.2.

Given three cell count patterns in Fig.3.2(a), a Steiner node is introduced in Fig.3.2(b)

with reduced the weight of the tree (i.e., the number of single gene duplication and loss

events) from 7 to 5. Fig.3.2(c) shows an instance that no Steiner node is introduced.

Since the count for each gene probe is independent, we can optimize mj independently

which minimizes
3∑

i=1
|xi

j−mj|, respectively, and mj simply equals to the median of x1
j ,

x2
j and x3

j . Thus (m1, m2, . . . , md) can be constructed in time O(d) and if it differs

from all three input cell count patterns then a Steiner node with cell count pattern

(m1, m2, . . . , md) has to be introduced. On the other hand,
d∑

j=1
miny∈N

3∑
i=1
|xi

j − y| is

a lower bound for the minimum weight of any steiner tree on three input cell count

patterns, and arg miny∈N
3∑

i=1
|xi

j − y| = mj, thus the above construction is optimal

under the rectilinear metric.

Sankoff et al. studied iterative approaches to approximate solutions to the Steiner
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tree, which solve the median problem for one internal vertex at a time, and iteratively

make improvement until a local optimum is found [114, 11]. For each internal node in

the current (binary) tree, the input for a median instance consists its three immediate

neighbors [11].

We first observed that considering only triplets that are immediate neighbors of

the same internal node may prevent the escape from a local optimal. For example,

the tree in Figure 3.3 is a local optimal with respect to all median optimizations on its

internal nodes, but the tree can be further improved by introducing potential steiner

nodes for all the possible triplets, not necessarily connected as a star shape, as shown

in Figure 3.3(b). Since RSMT(3,d) can be solved efficiently, our approach iteratively

checks all potential triplets in the tree, instead of only the triplets introduced by

immediate neighbors of internal nodes.

We further observed that the order how the steiner nodes are added to the tree

may also affect the minimizing the weight of the resulting tree. Figure 3.3(a) shows

the original tree before iterative optimization, and Figure 3.3 (b) and (c) show the

introduction of steiner nodes through two different orders. Compared to Figure 3.3

(c), Figure 3.3 (b) first introduced a steiner node 21422282 which prevents adding

new potential steiner nodes in the later stage.

We define an inference score for each potential steiner node to model the inference

between potential steiner nodes. The steiner count of any node in the current tree is

define as the number of triplets which contains this node and requires the introduction

of a steiner node to optimize the tree weight. The inference score for each potential

steiner node with respect to a triplet is thus defined as the sum of steiner counts

of three nodes in that triplet. At each iterative, the potential steiner node with

minimum inference score is added to minimize the inference upon other potential

steiner nodes with respect to the current tree. An example is shown in Figure 3.4.

Our iterative algorithm starts from a Minimum Spanning tree built from the set
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(a) (b) (c)

Figure 3.3 Different orders of adding steiner nodes result in different weights of the
resulting trees.

Figure 3.4 The definition of steiner count of the node in the current tree and the
inference score of potential steiner nodes to be added.
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of input cell count patterns, select a median instance at a time, and iteratively make

improvement until a local optimum is found. The detailed description is shown in

Algorithm 13.

Input: a set of k cell count patterns on d gene probes
Output: a tree with additional steiner nodes if needed and k nodes that
correspond to k input cell count patterns respectively
Initialization: the initial tree T0 = a Minimum Spanning tree on k cell count
patterns under the rectilinear metric
Iteration: from tree Ti(Vi) on node set Vi to Ti+1(Vi+1) on node set Vi+1

Identify the set S of potential steiner nodes from all possible triplets in Ti

While S is not empty
Select the potential steiner node p with minimum inference score in S
Build a Minimum Spanning tree on {Vi ∪ p} as T (Vi ∪ p)
If the weight of T (Vi ∪ p) is lower than the weight of Ti(Vi)

Ti+1(Vi+1) = T (Vi ∪ p)
Else

S = S \ {p}
Exit condition: S is empty

Algorithm 1: An iterative algorithm to approximate solutions for RSMT

Experimental Results

Real cancer data

There are 25 data samples the breast cancer dataset, and our iterative approach

iFISHtrees performs better than FISHtrees in 14 sample, ties in 10 samples,

and performs worse in 1 sample. Table 3.1 summarizes the comparison between

FISHtrees and iFISHtrees (ties are not included due to the space limit and the bet-

ter tree weight is shown in bold). Fig. 3.5 show two trees constructed by FISHtrees

and iFISHtrees reconstructed from the DCIS cancer sample from patient 13, respec-

tively. For example, the steiner node 44423334 is introduced by iteratively checking

all potential triplets in iFISHtrees rather than checking only the triplets introduced

by immediate neighbors of internal nodes, which allows iFISHtrees to escape from

the local optimal that has tapped FISHtrees.
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(a)
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(b)

Figure 3.5 Phylogenetic trees constructed by FISHtrees(a) and iFISHtrees(b)
from the DCIS breast cancer sample of patient 13, respectively. Each node in the
tree is labeled by a cell count pattern of eight gene probes COX-2, DBC2, MYC,
CCND1, CDH1, p53, HER-2 and ZNF217. Nodes colored in green represent
inferred Steiner nodes while other nodes represent input cell count patterns.
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Table 3.1 Comparison on the real dataset for breast cancer samples.

Case # Initial FISHtrees iFISHtrees
Node # Tree

weight
Node # Tree

weight
Node # Tree

weight
B1_IDC 119 230 135 213 132 212
B1_DCIS 143 259 158 241 159 242
B2_IDC 104 238 124 217 123 216
B3_DCIS 106 72 80 100 80 98
B4_IDC 110 232 129 214 129 213
B6_IDC 85 116 90 112 90 111
B7_IDC 59 128 73 116 71 113
B7_DCIS 76 202 84 186 83 184
B9_IDC 94 251 121 222 119 217
B9_DCIS 76 177 89 164 89 162
B10_DCIS 95 154 89 146 89 145
B11_DCIS 80 144 87 136 84 135
B12_IDC 112 212 124 201 123 200
B13_IDC 84 140 92 133 92 131
B13_DCIS 43 66 47 63 47 62

Similarly, our iterative approach iFISHtrees performs better than FISHtrees

in sample 29, ties in 16 samples, and performs worse in 2 samples, out of 41 sam-

ples in the cervical cancers datasets. Table 3.2 summarizes the comparison between

FISHtrees and iFISHtrees (ties are not included due to the space limit and the

better tree weight is shown in bold).

Simulation data

We also test on simulated datasets generated for different number of gene probes

(4, 6 and 8) and for different tree growth factors (0.4 and 0.5) [27]. For each pair

of parameters, we simulate 200 samples with cell count patterns varying from 75 to

150. Table 3.3 summarizes the comparison of between FISHtrees and iFISHtrees

from these simulation datasets, and in average iFISHtrees outperforms FISHtrees

on all of them. Moreover, we also generate simulated datasets for relatively larger

number of gene probes (e.g., 12 and above), FISHtrees started taking too much
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Table 3.2 Comparison on the real dataset for real cervical cancer samples.

Case # Initial FISHtrees iFISHtrees
Node # Tree

weight
Node # Tree

weight
Node # Tree

weight
C5 140 208 153 195 151 196
C9 130 144 131 143 132 142
C10 72 87 72 87 73 86
C12 63 72 63 72 64 71
C15 66 75 67 74 68 73
C21 63 77 67 73 65 74
C27 49 60 50 59 52 57
C29 76 85 78 83 78 82
C32 160 216 167 209 169 207
C34 67 88 72 83 73 82
C37 71 74 72 73 73 72
C42 157 207 164 199 166 198
C45 126 183 136 172 140 169
C46 87 116 92 110 93 109
C49 128 166 132 162 133 161
C51 76 83 76 83 83 76
C53 64 82 67 82 66 79
C54 123 152 129 146 130 145

Table 3.3 Comparison on simulated datasets.

Probe # Growth
factor

FISHtrees
=iFISHtrees

FISHtrees
>iFISHtrees

FISHtrees
<iFISHtrees

4 0.4 176 23 1
6 0.4 161 30 9
8 0.4 162 31 7
4 0.5 182 18 0
6 0.5 160 31 9
8 0.5 152 32 6

time to produce solutions while our iterative approach iFISHtrees still scales well

with dozens of gene probes, and thus we did not include the comparison results for

larger number of gene probes.
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3.3 Conclusions and discussion

Chowdhury et al. successfully modeled the progression of tumor progression using

FISH copy number to the Rectilinear Steiner Minimum Tree (RSMT) problem, and

proposed both exact and heuristic algorithms to reconstruct phylogenetic trees mod-

eling the development of cancer cell patterns [27]. We show that the RSMT problem

can be solved in linear time when there are only three input cell count patterns. In-

spired by the iterative approaches to approximate solutions to the Steiner tree in the

“small phylogeny" problem [114, 11], we propose a new iterative algorithm to approx-

imate solutions of the RSMT problem. Moreover, our new iterative approach extends

the generation of median instances, and also takes into account the order of iterative

optimizations of median problem. Experimental results from both simulated and real

tumor data show that our approach outperforms the previous heuristic algorithm in

approximating better solutions for the RSMT problem and may provide insights into

more likely tumor progression pathways.
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Chapter 4

Maximum parsimony analysis of gene copy

number changes in tumor phylogenetics

4.1 Background

Chowdhury et al. successfully modeled tumor progression using FISH copy number to

the Rectilinear Steiner Minimum Tree (RSMT) problem. Their heuristic is also likely

to be trapped in a local optimum if there are multiple possible Steiner nodes that can

be introduced, since the order in which the Steiner nodes are added may affect the

resulting tree weight. Although we try to solve this issue by adding potential Steiner

nodes by better order as shown in Chapter 3, it is still like to be trapped by local

optimal.

Phylogenies provide great help in the analysis of many fine-scale genetic data.

The use of phylogenetics has become more and more frequent, essential in a varies

of research fields such as medical research, drug discovery, epidemiology, and pop-

ulation dynamics [99]. For example, phylogenetics gave considerable assistance in

predicting evolution of human influenza A [16], understanding the genetic evolution

of HIV [111], identifying new viruses such as SARS [85], reconstructing and identi-

fying ancestral proteins [22]. Later, phylogenies were used to study the evolutionary

history in popular human diseases [90, 102, 126, 110, 27, 26]. Among these studies in

particular, Chowdhury et al. used single-cell sampled data from affected individuals

as FISH data. The survey of Beerenwinkel et al. summarized the uses of molecular

phylogenetics [21].
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Figure 4.1 This phylogenetic tree made as an estimate of 18 world human groups
by a neighbor-joining method based on 23 kinds of genetic information. It was
made by Saitou Naruya professor at the National Institute for Genetics (2002).

Phylogenetics research studies the hierarchical evolutionary relationships among

species, or taxa, by means of data such as DNA, RNA, amino acids, or FISH copy

number. The research results are usually shown as a weighted tree, called a phylogeny,

whose leaves represent the observed taxa, internal vertices represent the ancestors,

edges stand for the estimated evolutionary relationships, and edge weights represent

evolutionary distance between the two connected taxa [40]. Fig.4.1 is an example of

phylogeny tree get from one distance-based phylogenetic inference method Neighbor-

join. [112]

Methods for phylogenetic reconstruction can be roughly classified into three groups

according to the criterion they follow.

• Distance-based methods:

– Neighbor-join [112], FastME [22] and TIBA [48]

• Parsimony-based methods:

– BPanalysis [6], [91], MGR [14],SCJ [9], PAUP [135], TNT [53].
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• Probability-based methods:

– RAxML [127]

TNT(Tree analysis using New Technology) [55] is a program available for Win-

dows, MacOS or Linux. It has very efficient tree-searching algorithms for large data

sets of great number of taxa. Parsimony is its only available optimality criterion.

It implements many new heuristic search methods, such as the ratchet and sectorial

searches. It can also be used for tree manipulation and diagnosis. Most real data

matrices have too many taxa (i.e. more than about 100 taxa) to be analyzed by exact

methods therefore a search for the most parsimonious trees must be conducted, TNT

could be a good choice.

4.2 Methods and result

We developed our new RSMT solver by transferring it to be the MPT problem. We

studied our MPT problem based on TNT and extensively tested on our new tool,

the result shows our new tool provides more accurate phylogenetic trees comparing

to earlier methods.

Problem 4.2.1. The small phylogeny problem (Maximum parsimony tree):

Given a set Γ of n taxa and values dij ≥ 0 for all pairs of taxa i, j ∈ Γ(i 6= j), find a

phylogeny t∗ ∈ T that solves the problem:

min
t∈T

w(T ) =
∑

e∈E(T )
we

where we ≥ 0 for all e ∈ E(t∗) , E(t) denotes the set of edges of a phylogeny t ∈ T ,

we is the weight of edge e ∈ E(t).

The MPT problem is also NP complete [32] but heuristics like TNT [53], have

largely overcome computational limitations and allow reconstructions of large trees

and the use of continuous characters [54]. The copy number of each gene can be
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treated as continuous characters and TNT can be used to find the minimum weight

phylogenetic tree. Note that, given n observed cell count patterns as the input (leaf

nodes), MPT introduces (n-2) unobserved internal nodes, while the minimum span-

ning tree does not introduce any unobserved nodes.

In general, there may be multiple optimal solutions for the MPT problem, e.g.,

the internal nodes labeled by different cell count patterns. In any MPT with all nodes

labeled by cell count patterns, a branch is called trivial if its length is 0 under the

rectilinear metric. For any MPT, an unobserved internal node is a Steiner node if

and only if it is labeled by a distinct cell count pattern other than any input cell

count patterns. If we contract all trivial branches in MPT, the remaining unobserved

internal nodes will be the Steiner nodes in RSMT. See Figure 4.2 for an example.

Figure 4.2 (Top) the input data of 4 cell count patterns on 3 genes. (Bottom) two
maximum parsimony trees MPT and MPT’, both of weight 6, are shown on the left.
Nodes with identical cell count patterns are shown in the same color in both MPT
and MPT’. The corresponding RSMT and RSMT’, both of weight 6, are shown on
the right, and the Steiner node in RSMT is colored in red.

The MPT, as obtained above, may contain up to (n-2) Steiner nodes. Following

the philosophy of parsimony, we will also seek to minimize these artificially introduced

nodes, although this step does not reduce the final tree weight and is not required by
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the formal definition of RSMT (which does not place any explicit constraints on the

number of Steiner nodes). In fact, all the previous heuristics [27, 26, 162] also im-

plicitly do not add unnecessary Steiner nodes and are biased towards a parsimonious

solution due to their incremental way of adding Steiner nodes to an initial tree with

no Steiner nodes.

Given any MPT, if the internal nodes are labeled by cell count patterns, the RSMT

can be derived by contracting all its trivial edges; but the MPT obtained does not

have labels assigned to the internal nodes. Hence the problem reduces to finding the

best possible labels for internal nodes that does not increase the weight. The dynamic

programming (DP) method of [134] can be adapted to find the internal labels, but

modifications are needed to account for the rectilinear metric and its implications on

the total tree weight. Our algorithm proceeds by finding whether a leaf label can be

reused in its parent (or “lifted”) for each leaf in the tree. The node with the lifted

pattern is chosen to be the root node and the leaf is removed. In the bottom–up

phase of the DP, labels from other leaves are propagated up the tree by using ranges

of cell count patterns that can maintain the leaf cell counts without increasing the

tree weight. In the top–down phase, cell count values are assigned to the internal

nodes and a candidate tree is generated by contracting trivial edges. Several such

candidate trees are generated by selecting different root nodes from lifted leaves. We

choose a candidate tree with minimum number of Steiner nodes, without increasing

tree weight.

The complete algorithm is presented in Algorithm 2 and a detailed example is

shown in Fig.4.3.

The data we used to test the performance of our new tool contains real cancer

data and simulation data. The real data and simulation data generation is the same

as explained in Chapter 3. Figure 4.4 shows three approximate RSMT trees for

the cervical cancer sample of patient 29, constructed by FISHtree (Figure 4.4(a),
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Input: MPT with optimal weight Wopt

Output: RSMT with optimal weight Wopt

For each Leaf in MPT
Parent(Leaf): the parent node of Leaf in MPT
MPT \ Leaf : the tree obtained by removing Leaf , rooted at

Parent(Leaf)
(Figure 4.3(a))

Compute the ranges of possible values in internal nodes in MPT \ Leaf
(DP bottom-up phase; Figure 4.3(b))

Assign the cell count pattern of Leaf to Parent(Leaf)
Determine all the values for all other internal nodes in MPT

(DP top-down phase; Figure 4.3(c))
Contract all trivial branches in MPT \ Leaf and derive RSMT ∗

(Figure 4.3(d))
If the weight of RSMT ∗ is equal to Wopt

Store RSMT ∗ as a candidate RSMT
Return a candidate RSMT with the minimum number of Steiner nodes

Algorithm 2: Algorithm to derive RSMT from MPT

tree weight = 83), iFISHtree (Figure 4.4(b), tree weight = 82) and mpFISHtree

(Figure 4.4(c), tree weight = 81), respectively. In this figure, we refer to previous

heuristics as FISHtree [27, 26]1 and iFISHtree [162], and we refer to our Maximum-

Parsimony based approach as mpFISHtree. We also refer to the exact method [27]

as Exact.

Real Cancer Datasets

We use both the real cervical cancer and breast cancer which the same as the data

used by Chowdhury et al. Table 4.1 and Table 4.2 summarize the comparison of

FISHtree, iFISHtree and mpFISHtree for breast cancer samples and cervical

cancer samples, respectively (and the best tree weights are shown in bold). Note

that mpFISHtree of the three heuristic methods has the best performance in all

the samples. Figure 4.4 shows three approximate RSMT trees for the cervical cancer

1We use the best result derived from the heuristic option in [27] and the option
PLOIDY_LESS_HEURISTIC in [26] that also approximate RSMT under the case of gene copy
number changes of single probes.
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Figure 4.3 An example to test whether Leaf1 can be optimally “lifted" to its
parent node Node6 in MPT. (a) a MPT on 5 leaves and 3 internal nodes. (b) Leaf1
and compute the ranges of possible values to internal nodes, except Node6, in
MPT \ Leaf1 in a bottom-up phase. (c) Assign the cell count pattern of Leaf1 to
the root of MPT \ Leaf1, and determine the values for other internal nodes in
MPT \ Leaf1 in a top-down phase. (d) Contract all trivial branches in
MPT \ Leafi and derive RSMT ∗. Nodes with identical cell count patterns are
shown in the same color and the Steiner node in RSMT* is colored in red.

sample of patient 29, constructed by FISHtree (Figure 4.4(a), tree weight = 83),

iFISHtree (Figure 4.4(b), tree weight = 82) and mpFISHtree (Figure 4.4(c), tree

weight = 81), respectively.
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(a)

(b)

(c)

Figure 4.4 Given the metastatic cervical cancer sample of patient 12, (a)
approximate RSMT constructed by FISHtree with weight 83, (b) approximate
RSMT constructed by iFISHtree with weight 82 and (c) approximate RSMT
constructed by mpFISHtree with weight 81. Each node in the tree is labeled by a
cell count pattern of four gene probes LAMP3, PROX1, PRKAA1 and CCND1.
Each white node represents an input cell count pattern, and each red node
represents an inferred Steiner node. Branch lengths are shown in blue.
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Table 4.1 Comparison on the real datasets for breast cancer samples (Exact
results are not available due to the time limitation). The best tree weights are
shown in bold for each sample. The number of Steiner nodes is shown in
parenthesis. 7 breast cancer samples have ties in tree weights and thus are not
included due to the space limit.

Case # Tree weight (# Steiner nodes)
FISHtree iFISHtree mpFISHtree

B1_IDC 213 (15) 212 (13) 211 (19)
B1_DCIS 241 (14) 242 (15) 239 (22)
B2_IDC 217 (15) 216 (20) 211 (22)
B2_DCIS 56 (2) 56 (2) 55 (3)
B3_DCIS 100 (7) 98 (7) 98 (10)
B4_IDC 214 (16) 213 (17) 213 (17)
B6_IDC 112 (4) 111 (4) 111 (6)
B7_IDC 116 (8) 113 (12) 113 (12)
B7_DCIS 186 (13) 184 (14) 182 (22)
B9_IDC 222 (22) 217 (25) 213 (30)
B9_DCIS 164 (12) 163 (13) 161 (15)
B10_IDC 128 (4) 128 (4) 127 (4)
B10_DCIS 146 (6) 145 (8) 145 (9)
B11_DCIS 136 (6) 135 (7) 134 (7)
B12_IDC 201 (9) 200 (10) 198 (15)
B12_DCIS 161 (9) 161 (10) 158 (13)
B13_IDC 132 (7) 131 (8) 131 (8)
B13_DCIS 63 (3) 62 (4) 62 (4)

Simulated cancer data

4.3 Discussion

The Rectilinear Steiner Minimum Tree (RSMT) has been shown to be a good model

for progression of cancer cells using FISH cell count pattern data [27, 26]. Efficient

heuristics are necessary to obtain approximations to RSMT since finding the optimal

solution is NP–hard. We present a new algorithm to approximate the RSMT based on

Maximum Parsimony (MP) phylogeny reconstruction. Our experiments on synthetic

and real datasets demonstrate the superiority of our algorithm over previous methods

in obtaining better parsimonious models of cancer evolution. RSMT instances found
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Table 4.2 Comparison on the real datasets for cervical cancer samples. The best
tree weights are shown in bold for each sample. The number of Steiner nodes is
shown in parenthesis. 24 cervical cancer samples have ties in tree weights and thus
are not included due to the space limit.

Case # Tree weight (# Steiner nodes)
FISHtree iFISHtree mpFISHtree Exact

C5 195 (13) 196 (12) 194 (13) 194 (13)
C6 82 (2) 82 (2) 81 (5) 81 (4)
C8 103 (6) 103 (6) 100 (9) 100 (8)
C9 143 (1) 142 (2) 142 (5) 142 (2)
C10 87 (0) 86 (1) 86 (1) 86 (1)
C12 72 (1) 71 (2) 71 (2) 71 (2)
C13 150 (5) 150 (5) 149 (7) 149 (7)
C15 74 (1) 73 (2) 73 (2) 73 (2)
C18 127 (4) 127 (4) 126 (6) 126 (6)
C21 73 (4) 74 (3) 73 (5) 73 (4)
C27 59 (1) 57 (3) 57 (2) 57 (3)
C29 83 (2) 82 (3) 81 (3) 81 (3)
C30 118 (9) 118 (9) 116 (9) 116 (10)
C32 209 (7) 207 (9) 205 (14) 205 (13)
C34 83 (5) 82 (6) 82 (6) 82 (6)
C35 67 (1) 67 (1) 66 (2) 66 (3)
C42 199 (7) 198 (9) 197 (12) 197 (11)
C45 172 (10) 169 (13) 169 (14) 169 (15)
C46 110 (5) 109 (6) 108 (8) 108 (7)
C49 162 (4) 161 (5) 161 (7) 161 (7)
C53 80 (3) 79 (4) 79 (4) 79 (4)
C54 146 (6) 145 (7) 144 (10) 144 (9)

Table 4.3 Comparison on simulated datasets: number of times and percentage that
the best scoring tree (including ties) is obtained by the four methods. Exact results
for datasets with over four gene probes are not available due to the time limitation.

Probe # Growth fac-
tor

Best score count (Best score percentage)

FISHtree iFISHtree mpFISHtree Exact
4 0.4 92 (46%) 137 (68.5%) 196 (98%) 200
6 0.4 70 (35%) 98 (49%) 194 (97%) N/A
8 0.4 41 (20.5%) 69 (34.5%) 196 (98%) N/A
4 0.5 93 (46.5%) 130 (65%) 194 (97%) 200
6 0.5 68 (34%) 99 (49.5%) 196 (98%) N/A
8 0.5 40 (20%) 64 (32%) 195 (97.5%) N/A
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by our method (as well as previous heuristics) have multiple solutions with the same

tree weight and additional constraints are needed to choose one from them. We

choose the parsimonious solution of minimizing the Steiner nodes introduced by MP

reconstruction. Proving that our method produces the solution with the minimum

number of Steiner nodes and exploring other strategies to choose from multiple RSMT

solutions remain open problems. The RSMT instances usually have multiple optimal

solutions in terms of the overall tree weights, and other sources of information may be

used to distinguish them, e.g., minimizing the number of the Steiner nodes (although

we are not sure whether the algorithm in Section 4.2 guarantees the minimum number

of Steiner nodes introduced). We may further other optimization strategies to explore

multiple optimal solutions.
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Chapter 5

Tumor phylogenetic study considering of large

scale change

5.1 Background

It is quite clear that evolution is fundamental to cancer treatment problem such as

drug resistance[44]. There has been extensive work on tumor phylogenetics, however,

the study of algorithms for reconstructing tumor evolution for large numbers of single

cells has limitation comparing to great advances in data generation. The most method

used for single-cell tumor phylogenetics remains the use of simple generic phylogeny

algorithms such as neighbor-joining [112] that are not set to model the patterns of

copy number changes based on the theory that chromosome abnormalities are the key

changes. We developed algorithms to find copy-number phylogenies from a group of

cells with several probes. The earlier work was limited to a simple model that tumor

cells only evolve gaining or losing a single copy number on a single probe each step.

While large scale gene changes(including duplication of the entire chromosome or

genome) are commonly observed in cancer development, whole genome duplication

can be observed in around 37% cancer sample by The Cancer Genome Atlas Pan-

Cancer study [160]. In real tumors, gene copy numbers changes can be summarized

as the following three events. The first is single gene duplication/loss event as the

kind of event only considered in previous two chapters. The second is chromosome

duplication/loss event, in which a gene changes on the chromosome level while the

chromosome changed might contain multiple FISH markers. The last one is whole
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genome duplication event in which all the gene markers doubles after one operation.

The theoretical changes is summarized in Fig.5.1. The work in this chapter tries

to design the new scalable phylogenetic algorithms to fit more realistic models of

tumor-like evolution of using hundreds of single cells per tumor. Chowdhury et al.

recently extended the evolutionary model of tumor progression by gene copy number

changes of single probes to all probes, jointly, on a gene, a chromosome and the whole

genome [26]. In the following, we show how to extend the heuristics for RSMT to

derive approximate solutions for DSMT.

5.2 Method and result

In this chapter, we develop a new method to advance the theory of phylogenetic infer-

ence for cell populations in solid tumor. The data we used here is the same as the last

two chapter which is assessed by multicolor fluorescence in situ hybridization(FISH).

We still try to identify a most parsimonious tree of copy number changes on single

cell copy-number heterogeneity with considering large scale change. The main result

needed is the method being able to infer minimum distances between two cell pat-

terns by considering copy number changes on the three previous mentioned levels.

In the work of Chowdhuryet al. [26], the large scale changes, chromosome and whole

genome level changes are identified. We follow the idea from Chowdhury to first iden-

tify possible large scale duplications. Specifically, given a tree reconstructed by [26]

for DSMT, we first locate all branches containing large scale duplications (including

both chromosomal and whole genome duplications). We then remove such branches,

and thus split the tree into disjoint subtrees. For each subtree, we use only the leaf

genomes as the input and reconstruct a new RSMT tree by using the above two

heuristics (described in Chapter 2 and 3). Finally, we re-insert the removed branches

and thus assemble the reconstructed RSMT subtrees into a new tree which is our ap-

proximate solution for DSMT. Again the most time consuming part is phylogenetic
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Figure 5.1 Graph shows the three mechanisms of hypothetical copy number
changes. The original gene copy numbers are all 2 named as P1, P2 and P3, P4
respectively. After the single gene duplication event, the copy number of a gene
located on P4 gets increased by 1(A). The chromosome P4 gets duplicated and the
cell has one extra copy of that chromosome as chromosome P5 after the single
chromosome duplication event(B). All the chromosomes are duplicated and the
total number of chromosomes in The new cell is twice the number of chromosomes
in the original cell after the whole genome duplication event(C).

inference using TNT software. Since TNT is quite efficient, so average time spent

on the whole tree inference is much shorter comparing to the earlier methods.
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(a)
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(b)

Figure 5.2 Given the metastatic breast cancer sample of patient 13(DCIS sample), (a)
approximate RSMT constructed by FISHtree with weight 61 and (b) approximate
RSMT constructed by mpFISHtree with weight 63. Each node in the tree is labeled by
a cell count pattern of eight gene probes CDH1, COX2, DBC2,Her2, MYC, ZNF217, p53
and CCND1. Each white node represents an input cell count pattern, and each red node
represents an inferred Steiner node. Branch lengths are shown in blue while the edge with
WGD is labeled in red.
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As in Chapter 2 and 3, we compare the trees inferred by our new tools and earlier

methods by using real data and simulation. Here, similarly, we compare our tool

to FISHtree from Chowdhury et al. by applying them to cervical and breast cancer

data. We also did comparison based on simulation data. For the DSMT problem, we

compare FISHtree [26] and MPTtree, since MPTtree outperforms MSTtree for

RSMT. We first gave one example on metastatic breast cancer data sample of patient

13 in Fig. 5.2. We summarize the results on breast cancer samples and cervical

cancer samples in Table 5.1 and Table 5.2 (better tree weights are shown in bold).

We summarize the results on simulation data samples in Table 5.3 (better tree weights

are shown in bold). Similarly, MPTtree outperforms FISHtree in both real cancer

and simulation data. Note that DSMT problem is NP-hard and so obtaining optimal

solutions can be very difficult. Although the improvements in terms of tree weights

appear small, coming closer to the optimal tree even by a few units is challenging.

The improvements are more clearly seen on simulated data in the following section.

Table 5.1 Comparison on the real datasets for DSMT on breast cancer samples:
number of times and percentage that the best scoring tree (including ties) is
obtained by FISHtree and MPTtree.

Cell Line DSMT Best score
FISHtree MPTtree

B1_IDC 217 206
B1_DCIS 150 140
B2_IDC 203 189
B3_DCIS 99 97
B4_IDC 203 193
B5_IDC 64 63
B6_IDC 108 106
B6_DCIS 42 43
B7_IDC 116 115
B10_IDC 125 123
B11_DCIS 122 121
B12_IDC 125 123
B12_DCIS 162 149
B13_IDC 132 129
B13_DCIS 63 61
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Table 5.2 Comparison on the real datasets for DSMT on cervical cancer samples:
number of times and percentage that the best scoring tree (including ties) is obtained by
FISHtree and MPTtree.

Cell Line DSMT Best score
FISHtree MPTtree

C6 82 81
C8 95 93
C18 126 122
C24 201 204
C29 80 76
C34 81 82
C53 75 71

Table 5.3 Comparison on simulated datasets for DMST: number of times and percentage
that the best scoring tree (including ties) is obtained by FISHtree and MPTtree.

Probe # Growth
factor

DMST Best score count (Best score percentage)

FISHtree MPTtree
4 0.4 175 (87.5%) 191 (95.5%)
6 0.4 145 (35%) 194 (97%)
8 0.4 101 (50.5%) 199 (99.5%)
4 0.5 178 (89%) 189 (94.5%)
6 0.5 147 (73.5%) 193 (96.5%)
8 0.5 93 (46.5%) 200 (100%)

5.3 Discussion

This chapter presents novel theory and algorithms for reconstructing evolutionary

process from gene copy numbers in solid tumors. The new tool is built based on a

model which incorporates changes at the scale of single gene probes, full chromosomes,

or whole genome level. The novel approach utilizes the work of Chowdhury et al which

can infer the edges contain whole genome duplication and our earlier tool, MPtree,

which can infer maximum parsimony tree. Experimental results on simulated data

confirm the ability of the new methods to improve phylogenetic inference accuracy

relative(lower tree weight) to earlier models by applying more universal events and

maximum parsimony tree. Application to real human tumor data, cervical and breast

cancer data, shows that these extended evolutionary models are able to yield more
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parsimonious tree reconstructions. In the next chapter and future work, we will try

to extend the theory developed here to handle even more realistic models and more

challenging data types such as high throughput data. One way is to improve more

upon the heuristic approximations to better approach the goal of finding the large

scale change globally. The evolutionary models, likewise, might be further extended

to go beyond the three events mentioned above such as insertion, inversion. The data

sets contains only gene copy number information while we can get more information

about the cancer data such as direction of each alleles. Further more, single-cell

sequencing has the potential to eventually become practical for tumor phylogenies, it

should worth to extend the tool developed here to single-cell sequencing data. Since

the current status of the technologies will introduce error in the data, we should

develop tools to tolerate the error-prone data. Finally, we hope to make more use

of these new tools to further explore the biological insights by gaining from more

accurate tumor phylogenies from the tools.
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Chapter 6

Application of Phylogenetic Analysis to tumor

prognosis

6.1 Background

Cancer is a multi-step process which is driven by genetic mutations and epigenetic

alterations of DNA which can be easily shown in Fig. 6.1. By acquiring the start

mutations, a subset of cells get a faster growth rate and ultimately we have multiple

subpopulations of genomically distinct cell types forming the tumor itself. After-

wards, the tumor may become invasive, with cells migrating and colonizing to other

parts of the body and potentially becoming life threatening because some other key

mutations happened during the process. Recent research suggests a branch-type evo-

lutionary mechanism [2] instead of a linear model of evolution [38, 97]. Another

important character about tumor is that it is a heterogeneous system [132]. There

are experimental evidences of both intratumor and intertumor heterogeneity. Earlier

studies have revealed distinct mutations in closely related tumors and large hetero-

geneity within single tumors. Navin et al. [95, 94] demonstrated that a single breast

cancer biopsy may contain multiple intermixed tumor populations that differ by ma-

jor structural chromosomal gene amplifications. Gerlinger et al. [49] showed that

a single biopsy may underestimate the somatic mutational landscape of a tumor.

Campbell et al. [18] identified some amplification of cancer genes occurs predom-

inantly in early cancer development and all tumors studied harbored a dominant

clone that was distinct from other subclones. One explanation in their work is that
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some particular genotypes might drive metastasis. The intertumor and intratumor

heterogeneity can be utilized on both diagnosis and treatment of cancer [57, 132].

Figure 6.1 Emergence and progression of cancer.

As cancer is a continuously evolving system, the success in treatment of patients

depends not only the current state, but also what state it will be over the course

of the treatment. From the "evolutionary" perspective, the prospection state or the

changes during treatment can be predicted, thus the treatment can be expected to

change. However, to identify the cancer progression process has various problems in

the diagnosis, prognosis and treatment of the disease, such as sampling bias and bio-

markers discovery [132]. At present, normally targeted treatment with chemotherapy

is done based on the primary lesion, which may have been collected a long time ago

before the treatment. Such a treatment strategy may cease to work well for the reason

of dramastic changes during treatment.

The biomarker discovery approaches that combine prediction of gene function

with the help of genetic or transcriptomic analyses of tumor tissue often depend on

tumor biopsies collected from the primary or metastatic site of the tumor to priori-

tize the identification of candidate biomarkers for validation which can easily lead to

sampling bias [132]. Early detection of cancer is much more useful and crucial than

treatment of the disease at late stages [123]. This observation from earlier research

shows that many earlier detected cancers never posed a threat to the patient [12].

On the other side, overtreatment of cancers can become a more dangerous threat to

patient heath [13]. The assumption that initiation and progression of cancer is result
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of changes in a number of cellular functions and pathways caused by several "driver"

genes has been commonly accepted [62, 61]. So identification of the d̈riverg̈enes gives

possibility to design drug or therapeutics targeting these genes for each patient specif-

ically [33, 100]. To date, more than 100 targeted therapeutics have been identified

for the d̈riverg̈enes, thanks to the great advance in large-scale sequencing. Although

targeted therapeutics [24] has succeeded a lot, however, for most patients it is only

short-term recovery because the emergence of drug resistance [44].

The third character of tumor is the rate of mutations which is called hypermutabil-

ity [64]. The best known example of hypermutability is mutation in the TP53 gene

observed in a majority of human solid tumors [58], which leads to extensive gain,

loss and rearrangement of whole or large fractions of chromosomes during cell divi-

sion. Changes in cancer genomes affect both a single nucleotide and large segments

of genes, resulting in Single Nucleotide Variation (SNV) and Copy Number Aberra-

tions (CNA). SNVs are variations within genomes at single base levels. CNAs result

in larger rearrangements in chromosome segments and are an effective force behind

the larger genomic and phynotypic heterogeneity observed in cancer. In cells, copy

numbers of genes may change as a result of Single Gene Duplication, Chromosome

Duplication or Whole Genome Duplication events. There are current two widely ac-

cepted sources for rearrangement, chromothripsis and chromoplexy. Chromothripsis

refers to the phenomenon of massive genomic rearrangements as a result of a single

catastrophic effect during the cell lifetime [128]. Chromoplexy is another source of

complex genomic rearrangements where several strands of DNA are broken and then

ligated together to form a new configuration. There has been evidence of chromoplexy

both at clonal and subclonal level in prostate tumors [5]. Tumor cells accumulate

mutations and undergo large genomic rearrangements during the cell cycle to form

distinct subpopulations of cells. Due to this evolutionary nature of the progression of

cancer, phylogenetic inference tools started widely being used to study the evolution-
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ary relationships for cancer research [7]. Desper et al. firstly proposed "oncogenetic

tree" which uses a wild-type node as the tree root and other nodes representing a cell

type which arises after genomic changes [36].

Then a maximum weight branching-based tree construction algorithm was pro-

posed [37]. Desper et al. proposed a distance based tree construction method to

estimate dependencies among cancer driving events [35, 74]. Von Heydebreck et al.

proposed a maximum likelihood based model for probabilistic Bayesian formulation of

the oncogenetic tree model [144, 74, 136, 8, 140]. Next generation sequencing makes

SNVs data available in a population of cancer cells and the size of SNVs data makes

it computationally difficult to infer a complete model of tumor progression. There

are already a lot research being done to infer phylogenies from SNV frequencies [97,

129, 161].Subclone identification is required for inferring phylogenies based on SNV

frequencies data. A Variational Bayes mixture and a Hidden Markov Model are pro-

posed to identify the subclones [88, 43]. For inference of tumor phylogeny from gene

expression data, Schwartz et al. [116, 141] proposed an unmixing of tumor samples

and then used the inferred mixtures of individual tumor states to identify possible

evolutionary relationships among tumor cells. Subramanian et al. [130] developed a

pipeline and a novel Hidden Markov Model for inferring tumor phylogenies from the

deconvoluted heterogeneous tumor samples. There are several other methods used to

infer phylogenetic history of single tumors profiled at regional level [93, 78, 59].

In this chapter, we explored the prognostic value of tumor phylogenies inferred

by our newest mpFISHtree which can take care of large scale changes. For the

experiments, we did tumor phylogenetic inference for the cervical and breast cancer

data using DMST solver–mpFISHtree. The example tree can be seen in Fig. 6.2 which

compares the primary and metastatic tumor sample from breast cancer patient 13.

We can see that the tree from primary tumor is more balanced and has more nodes.

The different topologies of the trees may prove that the cells in different state of

63



www.manaraa.com

(a)

tumor development have different selective pressures.

Phylogenetic models is valuable for distinguishing driver genes from passengers in

tumor genomic data. We tried to apply our mpFISHtree upon cervical and breast

cancer to tentatively identify the driver or key changes which lead to metastasis. We

tried to analysis of metastasis based on gene gain and loss pattern difference between

primary and metastatic tumor. The major molecular factors during past research lead

to metastasis are HOX7, EFGR, PDGFR, LAMP3 and several others [4, 75]. The

other several factors except LAMP3 are universal helpful for all kind of tumor metas-

tasis. LAMP3 overexpression is shown to be associated with an enhanced metastatic
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(b)

Figure 6.2 Comparison between trees inferred from primary and metastatic tumor
of patient 13 by using our DSMT solver–MPTtree.
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potential and may be a prognostic factor for cervical cancer [75]. PROX1 is a key reg-

ulator of lymphatic endothelial cell commitment during embryonic development [28]

while the function of CCND1 and PRKAA1 have population difference. For breast

cancer with lung metastasis, overexpression of several gene markers (EREG, COX2,

ID1, CXCL1, COX2, EREG and MMP1) are shown to have some correlation with

metastasis [89]. MYC indirectly increase metastasis potential through activating mi-

croRNA miR-9 [84].

6.2 Methods and results

To identify the key changes leading to metastasis, We applied our algorithm on each

of the samples in each of the datasets separately with considering of each SD, GD and

WGD events. We show the boxplots for the inferred parameter values in the cervical

cancer dataset in Fig. 6.3 for each marker. The boxplot for each marker is gain/loss

ratio inferred from pairs of 16 primary and 16 metastatic samples comparison. We

calculated the total number of times each gene showed a higher gain/loss ratio be-

tween the primary and metastatic samples out of the 16 pairs. We summarized the

result in table 6.1, upper cervical cancer part. There are total 12 pairs of primary and

12 metastatic samples. We similarly show the boxplots for the inferred parameter

values in the breast cancer datasets in Fig. 6.4 for the eight markers. We summarized

the result in table 6.1, bottom breast cancer part.

From the cervical cancer result shown in Fig. 6.3 and Tab. 6.1, we can see that

LAMP3 has the most significant difference between primary and metastasis dataset,

11 metastasis samples have higher gain/loss ratio while only 2 primary has higher

ratio. Fig. 6.3 shows the ranges of the difference between metastasis cancer compar-

ing to primary cancer. We examined whether the statistically significant results are

consistently due to higher proportion of gain in primary or in metastatic samples.

Out of 11 sample comparisons of LAMP3, seven were due to higher proportion of
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gain in metastasis and two were due to higher proportion of gain in primary samples.

For PROX1, thirteen different samples were observed, 8 of them are due to higher

proportion of gain in metastatic samples and five was due to higher proportion of

gain in primary samples. This result suggests that "higher gain of LAMP3" is asso-

ciated with the metastatic stage of cervical cancer, while "higher gain of PROX1" is

associated with the primary tumor.

From the breast cancer result shown in Fig. 6.4 and Tab. 5.1, we can see that

MYC has the most significant difference between primary and metastasis dataset, nine

metastasis samples have higher gain/loss ratio while only one primary has higher ra-

tio. Fig. 6.3 shows the ranges of the difference between metastasis cancer comparing

to primary cancer. We examined whether the statistically significant results are con-

sistently due to higher proportion of gain in primary or in metastatic samples. Out

of ten sample comparisons of MYC, nine were due to higher proportion of gain in

metastasis and one were due to higher proportion of gain in primary samples. For

CDH1, CCND1, thirteen different samples were observed, eight of them are due to

higher proportion of gain in metastatic samples and five was due to higher propor-

tion of gain in primary samples. This result suggests that "higher gain of MYC" is

associated with the metastatic stage of cervical cancer, while "higher gain of PROX1"

and "higher gain of CCND1" are associated with the primary tumor.

6.3 Conclusion and discussion

We showed our developed algorithms for the problem of inferring tumor phylogeny and

in this chapter we apply the mpFISHtree to single-tumor phylogenetic tree inference

at the cellular level, with specific application to inferring multiscale copy number

evolution from single-cell FISH data. We can see that by apply the new model to

cervical and breast cancer, the potential driver or key changes can be found. So we

can get the conclusion that the resulting models provide insight into tumor-specific
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Figure 6.3 Comparison of 16 pairs of primary and metastasis cervical cancer data.
Each boxplot represents the gain/loss ratio comparison between primary and
metastasis tumor sample. The range are for the up to 16 data input from 16
samples.

Table 6.1 The count of samples with higher gain/loss ratio for certain gene
marker(primary vs metastatic). The table contains four gene markers for cervical
cancer and eight for breast cancer.

Cancer type Gene marker Primary Metastatic
Cervical LAMP3 2 11

PROX1 8 5
PRKAA1 7 5
CCND1 6 6

Breast COX-2 5 7
CCND1 8 4
HER-2 4 6
ZNF217 2 7
DBC2 3 8
CDH1 7 3
p53 5 6
MYC 1 9
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Figure 6.4 Comparison of 12 pairs of primary and metastasis breast cancer data.
Each boxplot represents the gain/loss ratio comparison between primary and
metastasis tumor sample. The range are for the up to 12 data input from 12
samples.

variation and lead to improved prediction of future tumor progression in multiple

tumor types.
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Chapter 7

Application of Phylogenetic Analysis on CNV

data

7.1 Background

There are currently two data sources for clean single cell data source: fluorescence

in situ hybridization (FISH) and single cell sequencing. FISH data is collected based

on FISH (Fluorescent In Situ Hybridization) technology which shows presence or ab-

sence of specific DNA sequence in a cell. It has the advantage that it yields single-cell

resolution profiles instead of average information of a group of cells. Pennington et al.

proposed couple of methods to infer phylogenetic inference of single tumors by using

FISH data in single tumors [101, 103, 102]. Martins et al. developed computational

methods to predict the temporal order of somatic events of the genes BRCA1, PTEN,

and p53 using FISH data from 55 BRCA1 breast cancers. For single cell sequencing

data, there are also a lot of research has been done. Navin et al. [94] used the neigh-

bor joining algorithm to infer evolutionary histories of cancer lineages on low-coverage

single nucleus sequencing. Xu et al. [156] found common mutations among cells and

also significant difference between mutation pattern between cancer cells in the tumor

by using single cell exome sequencing. Hou et al. [66] found that this neoplasm of a

JAK2-negative myeloproliferative neoplasm patient represented a monoclonal evolu-

tion by whole-exome single cell sequencing. FISH data has the shortcoming that it

is not high-through output data which make it hard to be generally used, while it is

hard get enough cell sample for single sequencing data for technology limitations. So
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we need to modify our method to other more general available dataset such as data

got by next generation sequencing technology. Fast growing new technology such as

high throughput genomic, epigenetic and proteomic sequencing gave researchers a lot

options. [105, 77, 51]. Gene duplications and copy number variation is important in

understanding gene function, such as along the Y-chromosome of Rattus where they

caused elevation of blood pressure and affected kidney function [106]. In addition,

whole genome duplication is a major evolutionary event which occurred in several eu-

karyotic lineages, including plants, fungi and animals [73]. In particular, the monocot

and core eudicot ancestor shows this kind of major event [30]. Likewise for animals,

recent convincing evidence has shown that the whole genome duplication took place

in the common ancestor of all extant teleosts [52].

Rearrangement events in cancer lead to frequent and widespread gains and losses

of genomic material which is markedly different from that observed at the species or

population level [3]. Cancers, such as ovarian cancer, typically display a large number

of genomic rearrangement events which may lead to copy number variation (CNV) in

genes and large genomic segments, and is a source for analysis of evolutionary rela-

tionships of cancer genomes in their "ecological" context of space and time [121, 160].

During tumor development, copy number can also increase or decrease, mainly from

failures of DNA repair mechanisms (e.g., translesion synthesis and non-homologous

end joining) [34, 115, 131, 17, 29, 113, 23, 152]. We can represent CNV data as a

two-dimensional matrix where each row represents a cancer genome and each column

represents a marker; a value of the matrix corresponds to the number of copies of a

marker in a genome.

Epithelial ovarian cancer is considered a heterogeneous cancer as it comprises at

least five distinct histological subtypes, the most common and well-studied ovarian

cancer is high-grade serous ovarian cancer(HGSOC) [146]. Data from TCGA Re-

search Network greatly helped in understanding the genetic composition of HGSOC
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where genomic, epigenomic, and transcriptomic expression data from 489 patients

with HGSOC were analyzed for mRNA, microRNA, DNA copy number, and sites of

DNA methylation. Ovarian cancer is shown to have a low number of non-synonymous

mutations and high level of somatic copy number alterations by the studies using

paired-end next generation sequencing and high-density SNP arrays comparing to

other tumor types [76, 96].

Recently, Schwarz et al. proposed a method called MEDICC to jointly solve the

problems of phasing (infer major and minor copy-number) and tree reconstruction

based on the minimum evolution criterion [118]. The MEDICC method is devel-

oped upon copy number variation data, which is the average count for each gene and

are widely used for biological research. We decided to do some tentative research

using CNV data. Schwarz et al. [117] tried to correlate level of tumor heterogene-

ity with clinical outcome. Copy number information from 17 patient with HGSOC

(135 metastatic sites) at the time of diagnosis and following chemotherapy. They

designed a tool named minimum event distance for intratumor copy number compar-

isons (MEDICC) to build an evolutionary tree for each patient with at least three

tumor samples. 7.1 briefly shows the process of their experiment and the resulting

tree by using neighbor-joining. Their research endorsed significant intratumor hetero-

geneity and most tumors shows a branched evolutionary pattern. But we think the

tool MEDICC is not ideal to build phylogenetic tree for the patients compared to our

tool and thus can lead to poor prediction for key point of cancer emergence and right

treatment strategy. 7.2 shows two examples of spatial and temporal heterogeneity by

using MEDICC which show strong overall conservation. We extend our tools to deal

with CNV data to show that our tool is able to deal with highthroughput data.
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Figure 7.1 Overview of Schwarz et al.’s analysis on the clinical data. (A) Profiles
from 135 metastatic site from 17 patients with HGSOC, the process of MEDICC
algorithm, tumor evolution phylogeny and quantify heterogeneity. (B) Significant
patient-specific intra-tumor genetic heterogeneity based on neighbor-joining
method. The outer circular bar indicates resistant versus sensitive to treatment
based on survival: red, resistant; green, sensitive.

7.2 Methods

We tried to apply our tool upon CNV data get from Schwarz et al.’s work. Before we

apply our tool to the dataset, we first did some data treatment. Since the input data
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Figure 7.2 Overview of Schwarz et al.’s analysis on the clinical data. (A) Profiles
from 135 metastatic site from 17 patients with HGSOC, the process of MEDICC
algorithm, tumor evolution phylogeny and quantify heterogeneity. (B) Significant
patient-specific intra-tumor genetic heterogeneity based on neighbor-joining
method. The outer circular bar indicates resistant versus sensitive to treatment
based on survival: red, resistant; green, sensitive.

has hundreds of gene markers, we tried to reduce some redundancy information as

our tool work better with fewer gene markers. First we tried to combines the genes

which always change together as one gene. Secondly, we tried to limit the maximum

gene copy number allowed. We limit the maximum copy number to be 30 as the most

gene copy number is within this limit. Then we did tree inference upon the cleaned

dataset and compared the trees inferred by our tool with the trees from MEDICC.

There are totally 17 patient data samples in their dataset.

7.3 Result and Conclusion

We showed one example result tree using MEDICC and mpFISHtree in Fig. 7.3 and

its RF distance is just 1 which should be considered quite similar to each other. We
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(a) (b)
Figure 7.3 Comparison between trees inferred by our mpFISHtree and MEDICC of
patient 1. The distance between the two trees are just 1 which are almost the same.

got the same tree in fourteen sample and the RF distance for the other three data

samples are all 1. So we can see that our tool can be easily extend to be applied on

CNV data and the trees inferred by our tool is worth trust. Thanks to the high speed

of tnt, the speed of our tool is much faster than MEDICC.
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Chapter 8

Conclusions and Future Directions

8.1 Thesis conclusions

There have been various kinds of phylogenetic tools for gene order data and they

can be divided into event-based and probability-based methods. But there is no

detailed work being done to assess the quality of inferred ancestral genomes. Since

isolating and inversions are shown to produce a better ROC curve for PMAG and

GapAdj compared to other resampling schemes, we think that both isolating and

inversion are better resampling methods for adjacency-based ancestral reconstruction

method. We think that jackknifing, isolating, and inversion are all suitable resampling

methods for event-based parsimony methods such as GASTS. We also show that

the best threshold for different resampling schemes is around 75% from the FP and

FN analysis. An evolutionary understanding of tumor has long been recognized as

important for studying heterogeneity and problems in cancer treatment, such as, drug

resistance after treatment. There are already a lot work done for tumor phylogenetic

study. however, it is such a hard question that there is still strong eager for reliable

tools to be developed. In this thesis, we aim to implement novel algorithms and tools

to infer the underlying tumor evolutionary history. We first tried to solve the DSMT

problem which only involved single gene copy number change. To find the parsimony

phylogeny with missing nodes during evolutionary, steiner node, we start from two

direction, minimum spanning tree and maximum parsimony tree. In Chapter 2, we

solved the probe from minimum spanning tree side. We first built minimum spanning
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tree out of the input nodes which stands for the cell types. Then identify all the

potential steiner nodes which can reduce the minimum spanning tree weight by it

themselves. Finally, we tried to add the nodes into the minimum spanning tree in

an optimized order when they can reduce the tree weight. In Chapter 3, we tried to

solve the problem from maximum parsimony tree side. We first treat all the input

data as leaf nodes to build the phylogenetic tree. Then we further retract the zero

weight edges which also remove all the duplicate or redundant nodes. To further

fit for the parsimony purpose, for each retraction, we chose the one leads to fewer

steiner nodes. To accomplish the purpose of also considering large scale changes,

we employed the large scale change edges which can be found by Chowdhury’s work.

After we found edges with large scale changes, we divide the cell patterns into different

groups and apply maximum parsimony phylogenetic inference method to each group

and further link each subgroup to form the result tree by linking the edges with

large scale changes. All the tools developed by us are shown to work well on real

data, including breast and cervical cancer, and simulation data comparing to earlier

methods. Applying the new methods on the real tumor data resulted in inference of

more parsimonious models of tumor progression comparing to earlier methods. We

used the our new tool for cancer stage differentiate and found key remarks or driver

gene which can be potentially used to improve tumor diagnosis and prognosis. We

also tried to extend our work on highthroughput data. Our mpFISHtree gave similar

tree compared to MEDICC, the new software designed for phylogenetic inference on

cancer CNV data while the speed of our tool is much faster than MEDICC.

8.2 Future directions

The work in this thesis makes some contribution towards scalable algorithms for

phylogenetic inference for single tumors. As the same as the work of Chowdhury et

al., the algorithms developed in this thesis currently consider only single gene, chro-
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mosome level and whole genome level changes. However, gene copy number change

events can happen with other mechanisms too, such as all kinds of rearrangement

events, chromothripsis, chromoplexy etc. The evolutionary model should be further

extended to consider these and other mutational mechanisms by which copy number

profiles of tumor cells by combining with some other data types, such as pair end

data. Fig. 8.1 shows an example of possible change history of cancer evolutionary

history. The work presented in this thesis focused on FISH data. Although FISH is

currently the only technology to reliably profile gene copy numbers across hundreds

to thousands of cells per patient in sizable patient populations, it has its own limita-

tions: limitation on number of genetic markers and limitation on data types. Other

types of variations, such as single nucleotide variations, which are also important

in the evolution of tumors, cannot be captured using FISH. Although single cell se-

quencing technology is still far from becoming practical for the number of cells needed

for the questions we examine. However, that it will eventually become the dominant

technology for single cell cancer studies. There would thus be value in extending the

theory developed here to single cell sequencing data. Since our tools can handle larger

number and variety of markers, the main problem would be the noise arising from

single-cell amplification. There are also some other data types such as whole genome

sequencing data which our tools can be extend to apply on. Although we tried it on

CNV data, it is far away from enough since it is just tentative trial.

In the thesis, we have taken some first steps towards using tumor phylogenetics

as a source of features to predict driver gene changes. While these results show the

promise of these directions, they also suggest many avenues for improvement. In

the future we will try to apply on other data types for more important biological

findings. Successful cancer treatment depends on future evolutionary trajectory of

a cancer especially after drug treatment. The phylogeny inferred by our tool makes

advances in predicting future evolutionary trajectories of individual tumors as some to
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Figure 8.1 One possible phylogenetic history considering rearrangements.

data cell pattern can be treated as future cell pattern. The phylogenies inferred also

suggests important feature of the process how tumor is evolving such as driver gene.

In summary, our work represents an important development in tumor phylogenetic

study as a new source of clinical guidance for individualized patients.
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